1,298 research outputs found

    Optical thickness as related to pollutant episodes and the concentration of visibility degrading pollutants

    Get PDF
    A network of six sun photometers was placed in the central and northeast United States during the months of July through October, 1931. The objective of the program was to obtain measurements of atmospheric turbidity which can be related to the concentration of visibility-degrading pollutants in the atmosphere. These measurements serve as ground truth for a program to develop remote sensing techniques for measuring the vertically integrated aerosol concentrations in pollution episodes. The sun photometers measure the direct solar radiation in four passbands: 380 nm, 500 nm, 875 nm and 940 nm. The first three passbands will be used for measuring the aerosol optical depth and the last for measuring precipitable water

    The effect of crop rotation and soil amendments on soil N bioavailability and N2O emissions

    Get PDF
    Non-Peer ReviewedThe majority of N2O emissions result from bacterial denitrification and to a lesser extent nitrification, occurring in agricultural soils. Therefore, the overall N economy of a system, along with soluble C and limited O2 are the key drivers in the release of N2O. Crop rotations and soil amendments readily add to or deplete the soil N economy depending on the C:N ratio of the biomass returned to the field. This paper synthesizes the results of three varied studies to further elucidate the role of management on key drivers of N2O release. Study one examined how N2O emissions during potato production are influenced by choice of preceding crop in two-year potato rotations. There was a significant effect of preceding crop (PC) on cumulative growing season N2O emissions from the potato crop. Preceding crops of red clover and Italian ryegrass (average of 1.7 kg N2O-N ha-1) produced significantly higher cumulative N2O emissions when compared to preceding crops of corn, canola, soybean, barley and potato (average of 0.8 kg N2O-N ha-1). A second study on potatoes conducted by Lynch et al. (2009) using Plant Root Simulator (PRS)™-probes found that a PC containing red clover increased soil N supply rates compared to a PC containing pea-oat-vetch. This increase in PRS™–N supply rates was associated with increased N2O emission during the five-year potato rotation. The use of by-products from biofuel processing as soil amendments and N2O emissions during canola production was assessed by Schoenau et al. (2009). Wet distillers’ grain and thin stillage resulted in the greatest N2O production compared with soil amendments of alfalfa powder and glycerol. PRS™–N supply rates were closely linked with these patterns of N2O emissions. These results suggest that selection of rotation crops and soil amendments can have significant effects on N2O emissions as affected by soil N bioavailability

    Reverse Innovation: An Opportunity for Strengthening Health Systems

    Get PDF
    BACKGROUND: Canada, when compared to other OECD countries, ranks poorly with respect to innovation and innovation adoption while struggling with increasing health system costs. As a result of its failure to innovate, the Canadian health system will struggle to meet the needs and demands of both current and future populations. The purpose of this initiative was to explore if a competition-based reverse innovation challenge could mobilize and stimulate current and future leaders to identify and lead potential reverse innovation projects that address health system challenges in Canada. METHODS: An open call for applications took place over a 4-month period. Applicants were enticed to submit to the competition with a $50,000 prize for the top submission to finance their project. Leaders from a wide cross-section of sectors collectively developed evaluation criteria and graded the submissions. The criteria evaluated: proof of concept, potential value, financial impact, feasibility, and scalability as well as the use of prize money and innovation team. RESULTS: The competition received 12 submissions from across Canada that identified potential reverse innovations from 18 unique geographical locations that were considered developing and/or emerging markets. The various submissions addressed health system challenges relating to education, mobile health, aboriginal health, immigrant health, seniors health and women\u27s health and wellness. Of the original 12 submissions, 5 finalists were chosen and publically profiled, and 1 was chosen to receive the top prize. CONCLUSIONS: The results of this initiative demonstrate that a competition that is targeted to reverse innovation does have the potential to mobilize and stimulate leaders to identify reverse innovations that have the potential for system level impact. The competition also provided important insights into the capacity of Canadian students, health care providers, entrepreneurs, and innovators to propose and implement reverse innovation in the context of the Canadian health system

    Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation

    No full text
    Gene copy number variation (CNV) is increasingly implicated in control of complex trait networks, particularly in polyploid plants like rapeseed (Brassica napus L.) with an evolutionary history of genome restructuring. Here we performed sequence capture to assay nucleotide variation and CNV in a panel of central flowering time regulatory genes across a species-wide diversity set of 280 B. napus accessions. The genes were chosen based on prior knowledge from Arabidopsis thaliana and related Brassica species. Target enrichment was performed using the Agilent SureSelect technology, followed by Illumina sequencing. A bait (probe) pool was developed based on results of a preliminary experiment with representatives from different B. napus morphotypes. A very high mean target coverage of ~670x allowed reliable calling of CNV, single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) polymorphisms. No accession exhibited no CNV, and at least one homolog of every gene we investigated showed CNV in some accessions. Some CNV appear more often in specific morphotypes, indicating a role in diversification

    Post-polyploidisation morphotype diversification associates with gene copy number variation

    Get PDF
    Genetic models for polyploid crop adaptation provide important information relevant for future breeding prospects. A well-suited model is Brassica napus, a recent allopolyploid closely related to Arabidopsis thaliana. Flowering time is a major adaptation trait determining life cycle synchronization with the environment. Here we unravel natural genetic variation in B. napus flowering time regulators and investigate associations with evolutionary diversification into different life cycle morphotypes. Deep sequencing of 35 flowering regulators was performed in 280 diverse B. napus genotypes. High sequencing depth enabled high-quality calling of single-nucleotide polymorphisms (SNPs), insertion-deletions (InDels) and copy number variants (CNVs). By combining these data with genotyping data from the Brassica 60 K Illumina® Infinium SNP array, we performed a genome-wide marker distribution analysis across the 4 ecogeographical morphotypes. Twelve haplotypes, including Bna.FLC.A10, Bna.VIN3.A02 and the Bna.FT promoter on C02_random, were diagnostic for the diversification of winter and spring types. The subspecies split between oilseed/kale (B. napus ssp. napus) and swedes/rutabagas (B. napus ssp. napobrassica) was defined by 13 haplotypes, including genomic rearrangements encompassing copies of Bna.FLC, Bna.PHYA and Bna.GA3ox1. De novo variation in copies of important flowering-time genes in B. napus arose during allopolyploidisation, enabling sub-functionalisation that allowed different morphotypes to appropriately fine-tune their lifecycle

    The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

    Get PDF
    Advanced water processors being developed for NASA s Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS) and is based primarily on ISS experience related to the development of the VRA. The second ersatz solution was defined by NASA in support of a study contract to Hamilton Sundstrand to evaluate the VRA as a potential post processor for the Cascade Distillation system being developed by Honeywell. This second ersatz solution contains several low molecular weight alcohols, organic acids, and several inorganic species. A range of residence times, oxygen concentrations and operating temperatures have been studied with both ersatz solutions to provide addition performance capability of the VRA catalyst

    Methodologies to improve product life cycle decision making in the telecommunications industry

    Get PDF
    As pressure from regulation and customers increases on telecommunications equipment manufacturers and service providers to reduce the hazardous material content of telecommunications products and generally improve environmental performance, new methods for Product Life Cycle Management are required. Supplier and component environmental evaluation are vital and fundamental elements of any Product Life Cycle Management programme, as is the capture of data from the supply base. The information that needs to be captured from the supply base to meet the requirements of customers of telecommunications equipment providers; to meet the requirements of legislation; and to provide data for improving ecodesign and facilitating product-focused continual improvement for ISO 14001 has been identified. A method for capturing data from the supply base has been developed and recommendations made for implementation. A hierarchical supplier and component eco-evaluation methodology has been developed and tested. This methodology incorporates supplier environmental management performance, component inherent human toxicity, ecotoxicity and resource depletion. It provides component qualifiers and purchasers with a method of supplier environmental performance comparison and enables this criterion to be integrated with existing criteria such as quality and cost in the component and supplier selection decision-making process. Recommendations are made regarding the implementation of an industry-wide system to enable the capture of detailed product material composition data from the supply chain and the implementation of the eco-evaluation methodology to identify the supplier that has superior environmental performance. The result will be enhanced decision making in product design and manufacture, improved transparency in communication to customers and more informed decision-making at the end-of-life stage of the product life cycle.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research CouncilGBUnited Kingdo
    • …
    corecore